Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

Shan Gao,* Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.023$
$w R$ factor $=0.064$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

## Poly[cadmium(II)- $\mu_{4}$-benzene-1,3-dioxyacetato]: a two-dimensional layer cadmium(II) coordination polymer

In the title compound, poly[cadmium(II)- $\mu_{4}-m$-phenylenebis(oxyacetato) $]$, $\left[\mathrm{Cd}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ atom exists in a distorted monocapped octahedral coordination environment with seven O atoms from four carboxylate groups. The Cd atoms are bridged by benzene-1,3-dioxyacetate dianions with tridentate and tetradentate modes of the oxyacetate groups, leading to a two-dimensional layer structure parallel to (001).

## Comment

Crystal engineering of metal-organic supramolecular architectures by employing covalent linkages is a rapidly expanding field that offers potential for new classes of functional solids, in which the choice of suitable ligand is an important factor that greatly influences the structure and stabilization of the coordination architecture formed (Tao et al., 2000; Choi \& Jeon, 2003). Phenylenedioxydiacetic acids (bdoaH $)_{2}$, which have versatile binding modes, are good candidates for the construction of supramolecular complexes. Previously, we have reported some $\mathrm{Cu}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$ coordination polymers constructed by 1,4-bdoaH2 and coligands (or solvent), in which the 1,4 -bdoa ${ }^{2-}$ group shows the good capability of the bridging ligand in various coordination fashions, including bidentate (Gao, Liu, Huo, Zhao \& Zhao, 2004b, c; Gao, Liu, Huo, Zhao \& Ng, 2004a), tridentate (Gao, Liu, Huo, Zhao \& Zhao, 2004a) or tetradentate (Gao, Liu, Huo, Zhao \& Ng, 2004b; Gao et al., 2004). For example, in the $\mathrm{Cd}^{\text {II }}$ coordination polymer, $\left[\mathrm{Cd}(1,4 \text {-bdoa })\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{3}\right]_{n}$, the 1,4-bdoa ${ }^{2-}$ ligand is in a tridentate coordination mode (Gao, Liu, Huo, Zhao \& Zhao, 2004d). However, compared with the extensively studied complexes with the 1,4-bdoa ${ }^{2-}$ ligand and rigid terephthalate groups ( Xu et al., 2004; Banerjee et al., 2003), complexes with the 1,3-bdoaH ${ }_{2}$ ligand have been documented very little to date. Recently, we have reported the structures of three one-dimensional chain $\mathrm{Zn}^{\mathrm{II}}, \mathrm{Cd}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$ polymers (Gao, Li et al., 2004; Gao, Liu, Huo, Zhao \& Ng, 2004c; Liu et al., 2004), within which the 1,3-bdoa ${ }^{2-}$ dianions function as bidentate bridging ligands. In the case of the $\mathrm{Cd}^{\mathrm{II}}$ coordination polymer, $\left[\mathrm{Cd}\left(1,3\right.\right.$-bdoa) $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right]_{n}$ (Gao, Liu, Huo, Zhao \& $\mathrm{Ng}, 2004 c$ ), the $\mathrm{Cd}^{\mathrm{II}}$ ion has an octahedral geometry. In this paper, we report the crystal structure of the title compound, (I), $[\mathrm{Cd}(1,3 \text {-bdoa })]_{n}$, which is the first example of a coordination polymer based on just the 1,3-bdoa ${ }^{2-}$ ligand and $\mathrm{Cd}^{\mathrm{II}}$ ions.

As shown in Fig. 1, the asymmetric unit of (I) comprises one $\mathrm{Cd}^{\text {II }}$ ion and one 1,3-bdoa ${ }^{2-}$ dianion. The oxyacetate groups combined with the $\mathrm{Cd}^{\mathrm{II}}$ atom give two different fivemembered chelate rings and one four-membered ring. The $\mathrm{Cd}^{\text {II }}$ ion is seven-coordinated by four 1,3-bdoa ${ }^{2-}$ groups, and the local coordination around the $\mathrm{Cd}^{\text {II }}$ ion can best be
described as a distorted monocapped octahedron with a $\mathrm{CdO}_{7}$ chromophore. Its equatorial plane is defined by atoms $\mathrm{O} 1, \mathrm{O} 2^{\mathrm{i}}$, $\mathrm{O} 4^{\mathrm{ii}}$ and $\mathrm{O} 5^{\mathrm{ii}}$ [symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x$, $y+1, z]$, with an r.m.s. deviation of 0.08 (4) Å, the deviation of atom Cd1 from this plane being 0.46 (4) $\AA$. The axial positions are occupied by atoms O 3 and $\mathrm{O}^{\text {iii }}$ [symmetry code: (iii) $1-x, y+\frac{3}{2}, \frac{1}{2}-z$ ], with an angle of $160.54(6)^{\circ}$. The capping atom $\mathrm{O} 5^{\mathrm{iii}}$ deviates by 1.858 (3) $\AA$ from the plane defined by atoms $\mathrm{O}_{4}{ }^{\mathrm{ii}}, \mathrm{O}^{\mathrm{ii}}$ and $\mathrm{O}^{\mathrm{iii}}$. The $\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{ii}}$ and $\mathrm{Cd} 1-\mathrm{O} 5^{\mathrm{iii}}$ distances are 2.709 (2) and 2.614 (2) $\AA$, respectively, which are considerably longer than those other $\mathrm{Cd}-\mathrm{O}$ distances but lie within the range of $\mathrm{Cd}-\mathrm{O}_{\text {carboxylate }}$ bond distances [2.209 (2)2.879 (2) $\AA$ ] reported for $\mathrm{Cd}^{\mathrm{II}}$-carboxylate coordination polymers (Clegg et al., 1995). The $\mathrm{C} 10-\mathrm{O} 5$ and $\mathrm{O} 2-\mathrm{C} 1$ distances are longer than the $\mathrm{C} 10-\mathrm{O} 6$ and $\mathrm{O} 1-\mathrm{C} 1$ distances (Table 1), suggesting greater double-bond character of the latter bonds.

(I)

In the two-dimensional coordination polymer, the 1,3bdoa $^{2-}$ ligand displays interesting coordination modes. One of the oxyacetate groups adopts a tridentate mode, the other a tetradentate mode. In the former case, the oxyacetate group ( $\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$ ) in the bidentate chelating mode is coordinated to atom Cd1 through ether atom O3 and carboxyl atom O1, and connects to the adjacent atom $\mathrm{Cd} 1 A$ through the bridging O2 atom, the $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1 A$ separation being 5.601 (3) A [symmetry code: $(A) 2-x, y+\frac{1}{2}, \frac{1}{2}-z$ ]. In the latter case, the oxyacetate carboxyl group $\left(\mathrm{O}^{\mathrm{ii}}-\mathrm{C} 10^{\mathrm{ii}}-\mathrm{O} 6^{\mathrm{ii}}\right.$ ) chelates atom Cd 1 through ether atom $\mathrm{O} 4^{\mathrm{ii}}$ and carboxyl atom $\mathrm{O} 5^{\mathrm{ii}}$, and bridges to a neighboring atom $\mathrm{Cd} 1 D$ through atoms $\mathrm{O} 5^{\text {ii }}$ and O6 ${ }^{\text {ii }}$, with a Cd1 $\cdots \mathrm{Cd} 1 D$ separation of 4.606 (3) $\AA$ [symmetry code: $(D) 1-x, y-\frac{1}{2}, \frac{1}{2}-z$ ]. Thus, the $1,3-$ bdoa $^{2-}$ ligand with a heptadentate bridging mode is linked to four Cd atoms, with $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1 B$ and $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1 C$ separations of 5.988 (3) and 9.640 (3) A , respectively [symmetry codes: (B) $x, y-1, z ;(C)$ $\left.1-x, y-\frac{3}{2}, \frac{1}{2}-z\right]$, and further gives rise to a two-dimensional layer structure (Fig. 2). To the best our knowledge, such a heptadentate bridging mode of the $1,3-$ bdoa $^{2-}$ ligand is rare and is a novel structural feature for aromatic carboxylate coordination architectures.

## Experimental

Benzene-1,3-dioxyacetic acid was prepared following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci


Figure 1
ORTEPII (Johnson, 1976) plot of (I), showing $30 \%$ probability displacement ellipsoids. [Symmetry codes: (i) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $x$, $y+1, z$; (iii) $1-x, y+\frac{3}{2}, \frac{1}{2}-z ;(A) 2-x, y+\frac{1}{2}, \frac{1}{2}-z ;(B) x, y-1, z ;(C)$ $1-x, y-\frac{3}{2}, \frac{1}{2}-z ;(D) 1-x, y-\frac{1}{2}, \frac{1}{2}-z$.]


Figure 2
Two-dimensional layer structure of (I).
(1990). Cadmium dinitrate tetrahydrate ( $6.16 \mathrm{~g}, 20 \mathrm{mmol}$ ), imidazole $(1.90 \mathrm{~g}, 20 \mathrm{mmol})$ and 1,3-bdoaH $2(4.52 \mathrm{~g}, 20 \mathrm{mmol})$ were dissolved in an ethanol/water (1:1) solution, and then the pH was adjusted to 7 with 0.1 M NaOH . The mixture was sealed in a 25 ml Teflon-lined stainless steel bomb and held at 393 K for 5 d . The bomb was cooled naturally to room temperature, and colorless prismatic crystals of (I) were obtained after several days. Analysis calculated: C 35.69 , H 2.40\%; found: C 35.82, H $2.35 \%$.

## Crystal data

| $\left[\mathrm{Cd}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)\right]$ | $D_{x}=2.335 \mathrm{Mg} \mathrm{m}^{-3}$ |
| :--- | :--- |
| $M_{r}=336.57$ | Mo $K \alpha$ radiation |
| Monoclinic, $P 2_{1} / c$ | Cell parameters from 6536 |
| $a=8.2104(16) \AA$ | reflections |
| $b=5.9881(12) \AA$ | $\theta=3.6-27.5^{\circ} \AA$ |
| $c=19.473(4) \AA$ | $\mu=2.30 \mathrm{~mm}^{-1}$ |
| $\beta=90.21(3)^{\circ}$ | $T=293(2) \mathrm{K}$ |
| $V=957.4(3) \AA^{3}$ | Prism, colorless |
| $Z=4$ | $0.37 \times 0.26 \times 0.18 \mathrm{~mm}$ |

## Data collection

Rigaku R-AXIS RAPID
diffractometer

## $\omega$ scans

Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.469, T_{\text {max }}=0.663$
8736 measured reflections

## Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.023
wR(F}\mp@subsup{F}{}{2})=0.06
S=1.02
2188 reflections
154 parameters
H-atom parameters constrained
```

Table 1
Selected geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| Cd1-O1 | 2.209 (2) | $\mathrm{Cd} 1-\mathrm{O}^{\text {iii }}$ | 2.322 (2) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {i }}$ | 2.232 (2) | $\mathrm{O} 1-\mathrm{C} 1$ | 1.247 (3) |
| Cd1-O3 | 2.554 (2) | $\mathrm{O} 2-\mathrm{C} 1$ | 1.263 (3) |
| $\mathrm{Cd} 1-\mathrm{O} 4{ }^{\text {ii }}$ | 2.709 (2) | O5-C10 | 1.264 (3) |
| $\mathrm{Cd} 1-\mathrm{O} 5^{\text {ii }}$ | 2.230 (2) | O6-C10 | 1.248 (3) |
| $\mathrm{Cd} 1-\mathrm{O} 5^{\text {iii }}$ | 2.614 (2) |  |  |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 2{ }^{\text {i }}$ | 98.95 (7) | $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 5^{\text {iii }}$ | 133.48 (6) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3$ | 68.31 (6) | $\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 2^{\text {i }}$ | 99.85 (7) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4{ }^{\text {ii }}$ | 88.19 (6) | $\mathrm{O} 5{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O} 3$ | 87.03 (6) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 5^{\text {ii }}$ | 148.48 (7) | $\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 4{ }^{\text {ii }}$ | 63.85 (6) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 5^{\text {iii }}$ | 99.68 (6) | $\mathrm{O} 5^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 4^{\text {ii }}$ | 66.37 (6) |
| $\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 6^{\text {iii }}$ | 92.99 (7) | $\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{O} 5^{\text {iii }}$ | 82.88 (3) |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 3$ | 88.78 (7) | $\mathrm{O} 5^{\text {ii }}-\mathrm{Cd} 1-\mathrm{O}^{\text {iii }}$ | 112.40 (7) |
| $\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{O} 4^{\text {ii }}$ | 151.76 (6) | $\mathrm{O} 6^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 3$ | 160.54 (6) |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 5^{\mathrm{iii}}$ | 137.66 (6) | $\mathrm{O} 6^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 4^{\text {ii }}$ | 118.11 (6) |
| $\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O} 6^{\text {iii }}$ | 88.95 (7) | $\mathrm{O} 6^{\text {iii }}-\mathrm{Cd} 1-\mathrm{O} 5{ }^{\text {iii }}$ | 52.46 (6) |
| $\mathrm{O} 3-\mathrm{Cd} 1-\mathrm{O} 4^{\text {ii }}$ | 68.42 (6) | $\mathrm{Cd} 1{ }^{\text {iv }}-\mathrm{O} 5-\mathrm{Cd} 1^{v}$ | 143.9 (8) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 3$ | -18.2 (3) | $\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$ | -170.4 (2) |
| $\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 5$ | -11.3 (3) | C7-O4-C9-C10 | 172.0 (2) |

H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were refined in the riding-model approximation.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC \& Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Scientific Fund of Remarkable Teachers of Heilongjiang Province and Heilongjiang University for supporting this study.

## References

Banerjee, S., Drew, M. G. B. \& Ghosh, A. (2003). Polyhedron, 22, 2933-2941.
Choi, K. Y. \& Jeon, Y. M. (2003). Inorg. Chem. Commun. 6, 1294-1296.
Clegg, W., Cressey, J. T., McCamley, A. \& Straughan, B. P. (1995). Acta Cryst. C51, 234-235.
Gao, S., Li, J.-R., Liu, J.-W. \& Huo, L.-H. (2004). Acta Cryst. E60, m140-m141.
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Ng, S. W. (2004a). Acta Cryst. E60, m1329-m1330.
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Ng, S. W. (2004b). Acta Cryst. E60, m1370-m1371.
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Ng, S. W. (2004c). Appl. Organomet. Chem. 18. In the press.
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004a). Acta Cryst. E60, m1231-m1233.
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004b). Acta Cryst. E60, m1242-m1244.
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004c). Acta Cryst. E60, m1267-m1269.
Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004d). Acta Cryst. E60, m1308-m1310.
Gao, S., Liu, J.-W. \& Ng, S. W. (2004). Appl. Organomet. Chem. 18, 413-414. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, J. W., Huo, L. H., Gao, S., Zhao, H., Zhu, Z. B. \& Zhao, J. G. (2004). Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 20, 707-710.
Mirci, L. E. (1990). Rom. Patent No. 0743205.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Tao, J., Tong, M. L. \& Chen, X. M. (2000). J. Chem. Soc. Dalton Trans. pp. 3669-3674.
Xu, H. B., Su, Z. M., Shao, K. Z., Zhao, Y. H., Xing, Y., Liang, Y. C., Zhang, H. J. \& Zhu, D. X. (2004). Inorg. Chem. Commun. 7, 260-263.

